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Physics H7C Fall 1999 (Strovink)

PROBLEM SET 3

1.
(based on Purcell B.1.)
An electron of rest mass me and charge e, mov-
ing initially at a constant velocity v, is brought
to rest with a uniform deceleration a that lasts
for a time t = v/a. Compare the electromagnetic
energy radiated during the deceleration with the
electron’s initial kinetic energy. Express this ra-
tio in terms of two lengths: the distance that
light travels in time t, and the classical electron
radius r0, defined as

r0 ≡ e2

4πε0mec2
.

To carry out this calculation, you need a formula
like Purcell Eq. (B.6) that relates the instanta-
neous radiated power Prad to the instantaneous
acceleration a. In SI units, this formula is

Prad =
1

4πε0

2
3

e2a2

c3
.

(Note that, as far as one has been able to tell ex-
perimentally, the electron actually is consistent
with having zero radius, and it must have a ra-
dius at least several orders of magnitude smaller
than the “classical radius” r0.)

2.
(based on Purcell B.3.)
A plane electromagnetic wave with angular fre-
quency ω and electric field amplitude E0 is
incident on an isolated electron. In the resulting
sinusoidal oscillation of the electron, the max-
imum acceleration is |e|E0/m, where e is the
electron’s charge.

Averaged over many cycles, how much power
is radiated by this oscillating charge? (Note
that, when the maximum acceleration of the
electron rather than its maximum amplitude is
held fixed, the power radiated is independent of
the frequency ω.)

Divide this average radiated power by ε0E
2
0c/2,

the average power density (per unit area of wave-
front) in the incident wave. The quotient σ has

the dimensions of area and is called a scattering
total cross section. The energy radiated, or scat-
tered, by the electron, and thus lost from the
plane wave, is equivalent to the energy falling on
an area σ. (The case considered here, involving a
free electron moving nonrelativistically, is often
called Thomson scattering, after J.J. Thomson,
the discoverer of the electron, who first calcu-
lated it.)

3.
(based on Purcell B.4.)
The master formula

Prad =
1

4πε0

2
3

e2a2

c3
.

is useful for particles moving relativistically, even
though v � c was assumed in Purcell’s deriva-
tion of it. To apply it to a relativistic situation,
all we have to do is (i) transform to a comoving
inertial frame F ′ in which the particle in ques-
tion is, at least temporarily, moving slowly; (ii)
apply the master formula in that frame; and (iii)
transform back to any frame we choose.

Consider a highly relativistic electron (γ � 1)
moving perpendicular to a magnetic field B. It
is continually accelerated (in a direction perpen-
dicular both to its velocity and to the field), so it
must radiate. At what rate does it lose energy?
To answer this, transform to a frame F ′ moving
momentarily along with the electron, find E′ in
that frame, and thereby find P ′

rad.

Now show that, because power is energy/time,
Prad must be equal to P ′

rad.

This radiation generally is called synchrotron ra-
diation. It is both a blessing and a curse. The
blessing is that intense beams of UV and X-ray
photons are created at synchrotrons designed for
that purpose, such as Berkeley Lab’s Advanced
Light Source. These beams are essential for
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many studies and uses such as semiconductor
lithography. The curse is that synchrotron ra-
diation prevents circular electron accelerators of
practical size (up to tens of km in circumference)
from exceeding about 1011 eV in energy, much
weaker than the 1012 eV proton beams that have
been available at Fermilab for a decade.

4.
Fowles 2.4.
The solution to this problem was sketched in
lecture on 7 Sep. In Fowles’ notation, E0 and B0

are the same as the E1 and B1 discussed in class.

5.
Fowles 2.7.

6.
Fowles 2.10.

7.
(a.)
For an ideal linear polarizer with its transmis-
sion axis at an arbitrary angle φ with respect
to the x axis, calculate the Jones matrix. (As
usual, the beam direction is z, φ is an angle in
the xy plane, and φ is positive as one rotates
from x toward y.)
(b.)
For a linear polarizer, show that its Jones matrix
M is not unitary, i.e. M∗

ij �= (M−1
)
ji
. This

means that the action of the wave plate violates
time-reversal invariance. This makes sense be-
cause, for general polarization, the irradiance of
a light beam is reduced after passing through
the plate.

8.
A wave plate is made out of a birefringent crystal
whose lattice constants are different in the “fast”
and “slow” directions of polarization. This leads
to different indices of refraction for the two po-
larizations. If the x axis is along the “slow”
direction of the plate, x polarized light accu-
mulates a phase shift δ with respect to light
polarized in the “fast” or y direction, with

δ =
ωD

c
(nx − ny) .

Here nx > ny if the x direction is “slow”, ω is the
(fixed) angular frequency of the light, and D is
the thickness of the plate. Because the absolute
phase of the light is of no experimental inter-
est, the effect of the wave plate is equivalent to
multiplying the x component of (complex) E1 by
exp (iδ/2) and the y component by exp (−iδ/2).
(a.)
Write the Jones matrix for the ideal wave plate
just described.
(b.)
Calculate the Jones matrix for the general case
in which the “slow” plate axis lies at an angle φ
from the x axis, where, as in Problem 7, φ is an
angle in the xy plane.
(c.)
For the wave plate in (b), show that its Jones
matrix M is unitary, i.e. M∗

ij =
(M−1

)
ji
. This

means that the action of the wave plate is time-
reversal invariant. For any polarization, the irra-
diance of a light beam is unaffected by traversing
the plate (though its polarization may change
dramatically).


